Synaptics’ FlexSense™ 4-in-1 Sensor Fusion Processor Ushers in Era of Intuitive IoT Applications

In This Article:

Synaptics Incorporated
Synaptics Incorporated

Ultra-low-power, tiny processor combines up to four sensor inputs with proprietary algorithms to accelerate design, lower system cost, and simplify supply chains while bringing immersive IoT experiences to the consumer

Synaptics’ FlexSense™ 4-in-1 Sensor Fusion Processor Ushers in Era of Intuitive IoT Applications

Ultra-low-power, tiny processor combines up to four sensor inputs with proprietary algorithms to accelerate design, lower system cost, and simplify supply chains while bringing immersive IoT experiences to the consumer.
Ultra-low-power, tiny processor combines up to four sensor inputs with proprietary algorithms to accelerate design, lower system cost, and simplify supply chains while bringing immersive IoT experiences to the consumer.

SAN JOSE, Calif., May 02, 2022 (GLOBE NEWSWIRE) -- Synaptics® Incorporated (Nasdaq: SYNA), today announced the FlexSense family of sensor processors which captures and intelligently handles input from up to four sensors in a tiny, ultra-low-power form factor that is up to 80% smaller than existing solutions. Integrating a mix of capacitive, inductive, Hall effect and ambient sensing into a single processor with proprietary algorithms, the FlexSense family brings reliable, low-latency, and context-aware force, proximity, and touch sensing to Internet of things (IoT) devices such as true wireless stereo (TWS) earbuds, gaming controllers, augmented reality (AR) and virtual reality (VR) headsets, fitness bands, remote controls, and smart thermostats.

"Today's IoT devices are using multiple sensors to create richer interactions with users, but discrete implementations consume too much space and power, complicate system design and component supply chains, and don’t respond appropriately to false activations," said Mahesh Srinivasan, VP, Smart Sensing and Display at Synaptics. "By intelligently fusing multiple sensors in a single processor with proprietary algorithms, we enable more robust and reliable solutions for IoT applications that allow more intuitive and responsive interactions—while reducing system design, cost, configuration, and supply chain complexity for our customers."

Architecture and key benefits

FlexSense incorporates a central microcontroller that connects to two proprietary low-power, extremely fast analog front end (AFE) engines. These AFE engines quickly and efficiently sense and digitize data from the capacitive and inductive elements on the touch surfaces of an IoT product. The Hall effect sensors are implemented via metal plates on the device that detect magnetic fields, while an on-chip temperature sensor measures ambient temperature.

Capacitive sensing is typically used to detect finer grain touch, proximity, and actions such as fingers sliding on a surface. Inductive sensing can distinguish coarse grain touch, up to 256 levels of force, and actions such as knob rotation, while the Hall effect sensor detects magnetic fields, such as those from a magnet embedded in a docking station.