Setting a New Safety Benchmark for the Industry: Sungrow Achieves Success in the World's Largest BESS Fire Test

In This Article:

HEFEI, China, Nov. 18, 2024 /PRNewswire/ -- In June 2024, Sungrow took the bold step of deliberately combusting the 10MWh of its PowerTitan 1.0 liquid-cooled battery energy storage system (BESS), becoming the first company globally to conduct a large-scale burn test on an energy storage system. Recently, the company invested approximately 4.23 million USD[1] to perform the world's largest and longest burn test on 20MWh of its PowerTitan 2.0 liquid-cooled BESS.

These two burn tests conducted within six months underscore Sungrow's commitment to technological innovation, its relentless pursuit of product quality, and its unwavering dedication to ensuring the safety of both personnel and assets at energy storage plants. Meanwhile, the test represents Sungrow's steadfast commitment to upholding the safety baseline for the energy storage industry.

The 20MWh burn test replicated a real-world power plant fire scenario, completed under the oversight of DNV (Det Norske Veritas) experts and over 100 clients, and delivered results exceeding expectations. The results were clear: there was no fire propagation during the thermal runaway incident. In contrast to conventional industry burn tests, this test was a significant upgrade in terms of combustion duration, testing conditions, and safety standards, establishing a new benchmark for safety through rigorous and extreme testing.

Image: Four fully charged Sungrow's PowerTitan 2.0 BESS (5MWh each), each at 100% SOC (state of charge), were arranged in back-to-back (15 cm), side-by-side (150 cm), and face-to-face (350 cm) configurations, with all fire suppression systems disabled. (PRNewsfoto/Sungrow Power Supply Co., Ltd.)
Image: Four fully charged Sungrow's PowerTitan 2.0 BESS (5MWh each), each at 100% SOC (state of charge), were arranged in back-to-back (15 cm), side-by-side (150 cm), and face-to-face (350 cm) configurations, with all fire suppression systems disabled. (PRNewsfoto/Sungrow Power Supply Co., Ltd.)

Challenge 1: 
Withstanding Over 25 Hours of Combustion, Proving Superior System Protection Capability

Unlike common industry-standard combustion tests within 4 to 8 hours, this challenging test was designed to sustain for 3 to 6 times longer. After continuous burning within 25 hours and 43 minutes, the container structure of the thermal runaway unit remained intact, and the system could still be safely hoisted for removal. Importantly, the fire did not spread beyond the unit, demonstrating the PowerTitan 2.0's advanced explosion venting, flame retardancy, and impact resistance capabilities.

Challenge 2: 
Enduring Temperatures High Enough to Melt Steel, Verifying Thermal Runaway Containment

To simulate extreme operating conditions, four fully-charged energy storage units were arrayed nearby -- containers A and B were only 15 cm apart, which is the absolute minimum distance permitted in the industry (most power plant containers are spaced 3 meters apart). Despite the flames from container A reaching 1,385°C -- temperatures high enough to melt steel -- the fire did not spread to the neighboring container B, which maintained a safe temperature of 40°C. This result validates the PowerTitan 2.0's superior fire insulation ability, even when the units are placed in extremely close quarters.