Unlock stock picks and a broker-level newsfeed that powers Wall Street.

ROHM’s New SiC Schottky Barrier Diodes for High-Voltage xEV Systems: Featuring a Unique Package Design for Improved Insulation Resistance

In This Article:

Achieves approximately 1.3 times the creepage distance compared to standard products

ROHM's New Surface Mount SiC Schottky Barrier Diodes

Extends creepage distance to a minimum of 5.1mm, approximately 1.3 times greater than standard products
Extends creepage distance to a minimum of 5.1mm, approximately 1.3 times greater than standard products

Comparison of SiC SBD Package Shape Designs

Increasing the creepage distance supresses creepage discharge, eliminates the need for insulation treatment via potting
Increasing the creepage distance supresses creepage discharge, eliminates the need for insulation treatment via potting

Santa Clara, CA and Kyoto, Japan, Nov. 12, 2024 (GLOBE NEWSWIRE) -- ROHM Semiconductor today announced new surface mount SiC Schottky barrier diodes (SBDs) that improve insulation resistance by increasing the creepage distance between terminals. The initial lineup includes eight models (SCS2xxxNHR) for automotive applications such as onboard chargers (OBCs), with plans to  deploy eight additional models (SCS2xxxN) for industrial equipment such as FA devices and PV inverters in December 2024.

The rapidly expanding xEV market is driving the demand for power semiconductors, among them SiC SBDs, which provide low heat generation along with high-speed switching and high-voltage capabilities in applications such as onboard chargers. Additionally, manufacturers increasingly rely on compact surface mount devices (SMDs) compatible with automated assembly equipment to boost manufacturing efficiency. Compact SMDs typically feature smaller creepage distances, a fact that makes high-voltage tracking prevention a critical design challenge.

As leading SiC supplier, ROHM has been working to develop high-performance SiC SBDs that offer breakdown voltages suitable for high-voltage applications with ease of mounting. Adopting an optimized package shape, it achieves a minimum creepage distance of 5.1mm, improving insulation performance when contrasted with standard products.

The new products utilize an original design that removes the center pin previously located at the bottom of the package, extending the creepage distance to a minimum of 5.1mm, approximately 1.3 times greater than standard products. This minimizes the possibility of tracking (creepage discharge) between terminals, eliminating the need for insulation treatment through resin potting when surface mounting the device on circuit boards in high-voltage applications. Additionally, the devices can be mounted on the same land pattern as standard and conventional TO-263 package products, allowing an easy replacement on existing circuit boards.

Two voltage ratings are offered – 650V and 1200V – supporting 400V systems commonly used in xEVs, as well as higher voltage systems expected to gain wider adoption in the future. The automotive-grade SCS2xxxNHR are AEC-Q101 qualified, ensuring they meet the high reliability standards this application sector demands.

Going forward, ROHM will continue to develop high-voltage SBDs using SiC, contributing to low energy consumption and high efficiency requirements in automotive and industrial equipment by providing optimal power devices that meet market needs.