ONT releases Remora: Most Comprehensive Methylation

In This Article:

Oxford Nanopore integrates "Remora": a tool to enable real-time, high-accuracy epigenetic insights with nanopore sequencing software MinKNOW

Oxford Nanopore has today released Remora,a high-performance tool for methylation analysis, into its operating software, MinKNOW,broadening access to direct, PCR-free nanopore sequencing that captures methylation across the whole genome

OXFORD, UK / ACCESSWIRE / May 26, 2022 / From today, Oxford Nanopore users have easy access to precise whole genome methylation detection from PCR-free nanopore sequencing using Remora. By integrating Remora into MinKNOW the analysis of epigenetic modifications becomes seamless as it now runs in parallel to standard basecalling. This release complements the simplicity of native DNA sample preparation, which can be done in just 10 minutes using the same run, so at no additional cost. Nanopore sequencing is now the most comprehensive technology for characterising methylation, with the first releases aimed at targeting all CpG areas.

Native sequencing for greater epigenetic insight

Methylation detection has traditionally been dominated by using bisulphite treatment with short-read sequencing. Whilst this method has opened up the discovery of methylation sites, it also has limitations, increasing the cost and complexity of sequencing, owing to the requirement to repeat the run for essential comparison. Bisulphite cannot easily differentiate between methylation types such as 5mC/5hmC, or indeed add the detection of other modification types such as 6mA.

The Oxford Nanopore solution for detecting CpG methylation provides a number of advantages. No additional, complex sample preparation is required and epigenetic modification analysis can be performed across the whole genome during the experiment. Therefore, no additional toxic chemistry is needed, and the phasing of base modifications is put in genomic context with the ability to sequence long fragments of DNA. Nanopore technology enables base-modification analysis to be performed alongside nucleotide sequencing on a single read basis, so without the need to repeat the run.

Remora models demonstrate improved performance from a significantly simplified machine learning training process and they improve signal scaling which results in higher detection accuracy and quality filtered calls achieving 99.8% accuracy for 5mC in CpG contexts. This means that Remora delivers industry-leading methylation detection accuracy from a single read and provides biological insight into eukaryotic samples at only 20X coverage. Nanopore sequencing opens up the possibility of looking at methylation directly on individual DNA molecules, therefore representing how the DNA strands were in the cell, potentially the best and "most true" way of looking at DNA.