You Can Now Prove a Whole Blockchain With One Math Problem – Really

The Electric Coin Company (ECC) says it discovered a new way to scale blockchains with “recursive proof composition,” a proof to verify the entirety of a blockchain in one function. For the ECC and zcash, the new project, Halo, may hold the key to privacy at scale.

A privacy coin based on zero-knowledge proofs, referred to as zk-SNARKs, zcash’s current underlying protocol relies on “trusted setups.” These mathematical parameters were used twice in zcash’s short history: upon its launch in 2016 and first large protocol change, Sapling, in 2018.

Zcash masks transations through zk-SNARKs but the creation of initial parameters remains an issue. By not destroying a transaction’s mathematical foundation – the trusted setup – the holder can produce forged zcash.

Related: As Crypto Markets Go Cold, Who Will Pay for Open-Source Code?

Moreover, the elaborate ‘ceremonies‘ the zcash community undergoes to create the trusted setups are expensive and a weak point for the entire system. The reliance on trusted setups with zk-SNARKs was well known even before zcash’s debut in 2016. While other research failed to close the gap, recursive proofs make trusted setups a thing of the past, the ECC claims.

Bowe’s Halo

Speaking with CoinDesk, ECC engineer and Halo inventor Sean Bowe said recursive proof composition is the result of years of labor – by him and others – and months of personal frustration. In fact, he almost gave up three separate times.

Bowe began working for the ECC after his interest in zk-SNARKs was noticed by ECC CEO and zcash co-founder Zooko Wilcox in 2015. After helping launch zcash and its first significant protocol change with Sapling, Bowe moved to full-time research with the company.

Before Halo, Bowe worked on a different zk-SNARK variant, Sonic, requiring only one trusted setup.

Related: Zcash Developer Electric Coin Co. Reveals Q1 Financial Loss

For most cypherpunks, that’s one too many.

“People we are also starting to think as far back as 2008, we should be able to have proofs that can verify other proofs, what we call recursive proof composition. This happened in 2014,” Bowe told CoinDesk.

Proofs, proofs and more proofs

In essence, Bowe and Co. discovered a new method of proving the validity of transactions, while masked, by compressing computational data to the bare minimum. As the ECC paper puts it, “proofs that are capable of verifying other instances of themselves.”

Blockchain transaction such as bitcoin and zcash are based on elliptic curves with points on the curve serving as the basis for the public and private keys. The public address can be thought of the curve: we know what the elliptic curve looks like in general. What we do not know is where the private addresses are which reside on the curve.