Microvast Announces Breakthrough in True All-Solid-State Battery Technology

In This Article:

Figure 2: Voltage-capacity curve of Microvast’s ASSB for charge and discharge cycles. (Graphic: Business Wire)
Figure 2: Voltage-capacity curve of Microvast’s ASSB for charge and discharge cycles. (Graphic: Business Wire)
Figure 1: Cross sectional analysis visualization of Microvast’s bipolar stacked ASSB. (Graphic: Business Wire)
Figure 1: Cross sectional analysis visualization of Microvast’s bipolar stacked ASSB. (Graphic: Business Wire)

STAFFORD, Texas, January 09, 2025--(BUSINESS WIRE)--Microvast Holdings, Inc. (NASDAQ: MVST) ("Microvast" or the "Company"), a global leader in advanced battery technologies, today announced a significant milestone in the development of its True All-Solid-State Battery (ASSB) technology. This advancement represents a key step forward in improving safety, energy density, and efficiency for critical applications such as data center backup power systems and electric school buses, while also paving the way for future innovations in robotics and other high-demand sectors such as electric vehicles.

Unlike conventional lithium-ion or semi solid-state batteries, Microvast's ASSB utilizes a bipolar stacking architecture that enables internal series connections within a single battery cell. Traditional lithium-ion and semi solid-state batteries, constrained by the limitations of liquid electrolytes, typically operate at nominal voltages of 3.2V to 3.7V per cell. In contrast, Microvast's technology completely eliminates liquid electrolytes. This breakthrough allows a single cell to achieve dozens of volts or higher based on specific application needs. A voltage unattainable by any battery containing liquid electrolytes, which would otherwise decompose under such high voltages.

This bipolar design significantly reduces the number of interconnections between cells, modules, and packs. This simplifies the overall system architecture and enhances both energy efficiency and operational safety. Furthermore, Microvast has developed its proprietary all-solid electrolyte separator membrane based on an advanced polyaramid separator, which is non-porous and tailored specifically for solid-state applications. This separator ensures excellent ionic conductivity, structural stability, and long-term durability, addressing one of the most critical technical challenges in solid-state battery technology. Moreover, the ability to maintain stable high-voltage operation without compromising safety or long-term reliability underscores a key technical advantage of Microvast's ASSB technology, positioning it as a transformative innovation in the battery industry.

"Our solid-state battery innovation represents a significant leap forward in addressing real-world safety and efficiency challenges," said Yang Wu, CEO of Microvast. "By developing a technology that eliminates liquid electrolytes and prioritizes scalability, we are well-positioned to meet the evolving needs of industries requiring reliable and safe energy storage solutions."