MicroCloud Hologram Inc. Develops End-to-End Quantum Classifier Technology Based on Quantum Kernel Technology

In This Article:

SHENZHEN, China, May 20, 2025 (GLOBE NEWSWIRE) -- MicroCloud Hologram Inc. (NASDAQ: HOLO), (“HOLO” or the "Company"), a technology service provider, announced the development of a new quantum supervised learning method, with rigorous proof of its quantum speedup capability in end-to-end classification problems. This method not only overcomes the limitations of many current quantum machine learning algorithms but also provides a robust approach, enabling it to maintain efficient and high-precision classification capabilities even under errors introduced by limited sampling statistics.

The core of HOLO's end-to-end quantum-accelerated classifier method lies in constructing a classification problem and designing a quantum kernel learning approach that leverages quantum computing for acceleration. In this process, a carefully constructed dataset is proposed, and it is proven that, under the widely accepted assumption that the discrete logarithm problem is computationally difficult, no classical learner can classify this data with inverse polynomial accuracy better than random guessing. The choice of this assumption is critical, as the discrete logarithm problem is a cornerstone of modern cryptography and is considered extremely difficult to solve on classical computers. Thus, if HOLO's quantum method can effectively address this problem and provide classification capabilities significantly superior to classical algorithms, it would formally demonstrate the existence of quantum advantage.

Furthermore, to ensure the quantum classifier's feasibility in real quantum computing environments, HOLO designed a series of parameterized unitary quantum circuits and proved their efficient implementation on fault-tolerant quantum computers. These quantum circuits map data samples into a high-dimensional quantum feature space and estimate kernel entries through the inner product of quantum states. Through this process, HOLO's quantum classifier fully exploits the exponential computational power of quantum computing, achieving classification accuracy far surpassing that of classical machine learning methods.

The core idea of quantum kernel learning lies in using quantum computers to compute specific kernel functions that classical computers cannot efficiently calculate due to computational complexity. Traditional supervised learning methods, such as support vector machines (SVMs), rely on kernel methods to measure similarity between data points, whereas HOLO’s approach achieves this by leveraging the inner product of quantum states.