MicroAlgo Inc. Announced a Deep Clustering Algorithm Based on Multi-level Feature Fusion

In This Article:

BEIJING, March 25, 2024 /PRNewswire/ -- MicroAlgo Inc. (NASDAQ: MLGO) (the "Company" or "MicroAlgo"), today announced that it developed a deep clustering algorithm based on multi-level feature fusion. Multi-level feature fusion refers to the fusion of different levels of data features to obtain a richer representation of the features and improve the clustering algorithm's ability to understand the data, resulting in better clustering results. In deep clustering algorithms, multiple features are usually used to describe the data, such as low-level features of the original data and high-level features after processing.

MicroAlgo Inc.'s deep clustering algorithm based on multi-level feature fusion effectively solves the problems of data dimensionality disaster and feature redundancy by extracting and fusing features from data at different levels. It can automatically discover hidden patterns and similarities in the data to cluster the data points. Utilizing multi-level feature fusion and feature information at different levels, can better mine the intrinsic structure of the data and the relationship between the features, and improve the accuracy and stability of the clustering algorithm. At the same time, MicroAlgo Inc. used a combination of hierarchical clustering and deep learning to achieve more accurate clustering results. The specific process is as follows:

Feature extraction: Firstly, different levels of features of the input data are extracted. These features can be the color, texture, shape, etc. of the image. By extracting multiple features at different levels, we can capture more details and different aspects of the data.

Hierarchical clustering: Next, the extracted features are clustered using a hierarchical clustering algorithm. Hierarchical clustering is a bottom-up or top-down clustering method that can be used to divide the data into different clusters based on their similarity. The features at different levels are taken as input and the data is clustered hierarchically by using a hierarchical clustering algorithm.

Deep learning: To further improve the accuracy of clustering, MicroAlgo Inc. utilized a deep learning method to learn a representation of the data and input it as features into the hierarchical clustering algorithm. Deep learning can better capture the complex structure and features of data by mapping the data into a higher dimensional representation space through multiple layers of non-linear transformations.

Feature fusion: In the last, features obtained from different levels and deep learning are fused. This can be achieved by simple feature splicing, feature weighting, or feature fusion networks. By fusing multiple features of different levels and types, fully using the rich information from the data, to obtain more accurate and comprehensive clustering results.