Unlock stock picks and a broker-level newsfeed that powers Wall Street.
Medigene Presents Data on an Innovative IFN-γ Biosensor Technology at SITC 2024

In This Article:

Medigene AG
Medigene AG

Planegg/Martinsried, November 12, 2024. Medigene AG (Medigene or the “Company”, FSE: MDG1, Prime Standard), an oncology platform company focused on the research and development of T cell receptor (TCR)-guided therapies for the treatment of cancer, presented data on the newest addition to its End-to-End (E2E) Platform, an Interferon-Gamma (IFN-γ) Biosensor technology that allows real-time monitoring and quantification of IFN-γ release from cytokine-secreting cells at the Society of Immunotherapy of Cancer (SITC) 2024 Conference taking place in Houston, TX, USA from November 6-10, 2024.

The poster “The IFN-γ Biosensor – A universal tool for IFN-γ detection in cellular co-culture assays” is available on Medigene’s website: https://medigene.com/science/abstracts/

“Release of IFN-γ is one of the most common parameters used to measure T cell or NK cell functionality. Current methods for detection of IFN-γ secretion have several drawbacks, including extensive hands-on-time and needs for expensive, temperature-sensitive reagents,“ said Dolores Schendel, CSO of Medigene AG. “The IFN-γ Biosensor is an innovative tool within our E2E Platform that provides a simple, low-cost, cell-based alternative for quantification of secreted IFN-γ. This biosensor addresses limitations of current methods by reducing time, costs and complexity. The biosensor cells can be added directly as third-party bystander cells to co-cultures of T or NK cells, thereby dramatically reducing assay steps while enabling a dynamic assessment of IFN-γ secretion over time, going beyond standard end-point assays.” The presented poster displayed a direct comparison between the conventional standard method Enzyme-linked Immunosorbent Assay (ELISA) and the Company´s proprietary innovative IFN-γ Biosensor to determine IFN-γ release directly in cell co-cultures or in cell supernatants. The biosensor cells were generated to produce a green fluorescent protein (GFP) when exposed to IFN-γ and allow for quantitative analysis of the GFP fluorescent reporter signal

The IFN-γ biosensor demonstrated comparable sensitivity to ELISA, effectively detecting low levels of IFN-γ using standard measurement tools like flow cytometry and fluorescence readings. Detection was highly specific for IFN-γ, with minimal response observed only when exposed to exceedingly high levels of IFN-α or IFN-β, two other interferon types. Further in vitro assays showed that the biosensor produced dose-dependent results comparable to ELISA, that were stable and sensitive to IFN-γ stimulation over extended co-culture periods. The addition of this process optimization technology to the Medigene End-to-End Platform significantly reduces costs and complexity while increasing speed and reproducibility when applied in high-throughput screening assays of T or NK cell functionality. The time from assay completion to analysis of results was significantly reduced, providing faster data processing and is more efficient and streamlined when implemented in robotic workflows.