In This Article:
Microchip’s IGBT 7 portfolio is available with multiple topologies, current and voltage ranges
CHANDLER, Ariz., Nov. 12, 2024 (GLOBE NEWSWIRE) -- Power components are evolving to meet the increasing demands for higher efficiency, smaller size and greater performance in power electronic systems. To provide system designers with a wide range of power solutions, Microchip Technology (Nasdaq: MCHP) today announces its portfolio of IGBT 7 devices offered in different packages, multiple topologies, and current and voltage ranges.
Featuring increased power capability, lower power losses and compact device sizes, this new portfolio is designed to meet high-growth market segments such as sustainability, E-Mobility and data centers. These high-performance IGBT 7 devices are key building blocks for power applications in solar inverters, hydrogen ecosystems, commercial and agricultural vehicles and More Electric Aircraft (MEA).
Designers can select a suitable power solution based on their requirements. The IGBT 7 devices are offered in standard D3 and D4 62 mm packages, as well as SP6C, SP1F and SP6LI packages. Many configurations are available in the following topologies: three-level Neutral-Point Clamped (NPC), three-phase bridge, boost chopper, buck chopper, dual-common source, full-bridge, phase leg, single switch and T-type. Devices are available with voltages ranging from 1200V to 1700V and current ranging from 50A to 900A.
“The versatile IGBT 7 portfolio combines ease of use and cost efficiency with higher power density and reliability, offering our customers maximum flexibility. These products are designed for general industrial applications as well as specialized aerospace and defense applications,” said Leon Gross, corporate vice president of Microchip’s discrete product group. “Additionally, our power solutions can be integrated with Microchip’s broad range of FPGAs, microcontrollers (MCUs), microprocessors (MPUs), dsPiC® Digital Signal Controllers (DSCs) and analog devices to provide a comprehensive system solution from one supplier.”
The lower on-state IGBT voltage (Vce), improved antiparallel diode (lower Vf) and increased current capability can enable lower power losses, higher power density and higher system efficiency. The lower-inductance packages, combined with the higher overload capability at Tvj −175°C, make these devices excellent options for creating rugged and high-reliability aviation and defense applications—such as propulsion, actuation and power distribution—at a lower system cost.
For motor control applications where enhanced controllability of dv/dt is important, the IGBT 7 devices are designed to offer freewheeling softness for efficient, smooth and optimized driving of switches. These high-performance devices also aim to improve system reliability, reduce EMI and minimize voltage spikes.