IACR Recognizes CIS Lab Director Brent Waters with Test-of-Time Award

In This Article:

Waters Wins Sixth Test-of-Time Award; Cryptography & Information Security (CIS) Lab and NTT R&D Deliver 20 Papers at Crypto 2024

News Highlights:

  • IACR honors 2009 paper by Brent Waters with Test-of-Time Award.

  • Paper on dual-system encryption is Waters’ third ToT Award from IACR, sixth total.

  • CIS Lab and NTT R&D to deliver 20 papers at Crypto 2024 conference.

SUNNYVALE, Calif., August 21, 2024--(BUSINESS WIRE)--NTT Research, Inc., a division of NTT (TYO:9432), today announced that the International Association for Cryptologic Research (IACR) has honored a paper written by Cryptography & Information Security (CIS) Lab Director Brent Waters with a Test-of-Time Award. The paper, delivered at Crypto 2009, presented a new way of proving adaptive security for Identity-based Encryption (IBE), which was later expanded to cover more complex cryptographic systems. This is Waters’ third Test-of-Time Award from the IACR, and sixth total. It was presented on August 20, at Crypto 2024, one of the three flagship conferences of the IACR. Dr. Waters and six other cryptographers affiliated with the CIS Lab are also presenting 12 papers at this year’s event. Scientists from NTT Social Informatics Laboratories (SIL), a division of NTT R&D, are responsible for another eight papers at this top-tier conference. Crypto 2024 will be held August 18-22, in Santa Barbara, Calif.

The IACR gives Test-of-Time Awards annually to papers that were delivered 15 years prior at each of the three IACR general conferences (Eurocrypt, Crypto and Asiacrypt). A five-member IACR committee selects the winners based on a consensus view of a paper’s impact on the field. In the 2009 paper, titled "Dual System Encryption: Realizing Fully Secure IBE and HIBE under Simple Assumptions," Waters – the paper’s sole author – presented a methodology different from the then-prevalent method for proving adaptive security in IBE. (Adaptive security involves adversaries who can interact with a system and adapt their strategies accordingly.) Conceived in 1984 and enhanced in 2001 with a scheme using bilinear maps (i.e. functions that map a pair of elements from two groups to a third), IBE enables a user to encrypt to another party by simply knowing that party’s identity, as well as a set of global parameters. In the related system known as Attribute-based Encryption (ABE), introduced by Waters and Amir Sahai in a Eurocrypt 2005 paper that also won a Test-of-Time Award, a ciphertext is associated with a string of attributes x and a user key with a function f. A user can decrypt a ciphertext if and only if f(x) = true. In general terms, arguing that these cryptosystems are secure requires defining a game in which an attacker (or collusion of attackers) requests several private keys and then tries to decrypt what is called a challenge ciphertext. Because the security proof also includes a reduction algorithm, which relates the security of a cryptographic scheme to a known hard problem, attackers who prevail must also be able to solve some basic theoretical problem believed to be intractable. Thus, security is proved by contradiction.