Global Carbon Nanotubes Market Report 2023: Sector is Expected to Reach $13.32 Billion by 2028 at a CAGR of 15%
Company Logo
Company Logo

Global Carbon Nanotubes Market

Global Carbon Nanotubes Market
Global Carbon Nanotubes Market

Dublin, June 09, 2023 (GLOBE NEWSWIRE) -- The "Global Carbon Nanotubes Market: Analysis By Technology, By Type, By Application, By Region Size and Trends with Impact of COVID-19 and Forecast up to 2028" report has been added to ResearchAndMarkets.com's offering.

The market is anticipated to grow at a CAGR of approx. 15% during the forecasted period of 2023-2028. The global carbon nanotube (CNT) market was valued at US$5.72 billion in 2022. The market value is forecasted to grow to US$13.32 billion by 2028.

Carbon Nanotubes (CNT) are one dimensional allotropes of carbon made by rolled-up sheets of single-layer carbon atoms (graphene). Carbon nanotubes are composed of carbon atoms linked in hexagonal shapes, with each carbon atom covalently bonded to three other carbon atoms. The properties and applications of carbon nanotubes can vary depending on their type, diameter, length, and functionalization.

Rising global energy demand, ongoing advancements in material science and manufacturing technologies, increasing use of CNTs as conductive fillers in ESD materials, EMI Shielding, & electronics packaging, favourable government initiatives to reduce greenhouse emissions and promote renewable energy sources, etc., have been positively contributing towards increased demand for carbon nanotubes. Other significant factor is ongoing technological advancements and innovations in the market by CNT manufacturing companies to remain competitive in the market and strengthen their current portfolios, while attracting new customers.

Market Dynamics:

  • Growth Drivers: The global CNT market has been growing over the past few years, due to factors such as rising demand in electrical, electronics & semiconductor applications, increasing application in energy storage, growing demand of CNTs in other end user industries, increasing demand of CNTs in renewable energy and water treatment, etc. Carbon nanotubes are increasingly demanded for energy storage applications, particularly in the development of high-performance batteries, supercapacitors, and fuel cells, due to their large surface area, excellent electrical conductivity, and mechanical strength, which allows for improved energy storage and conversion capabilities. CNTs are mainly used in battery electrodes as conductive additives or coating material to improve electrode's charge transfer kinetics & stability and facilitate effective charge transfer, hence improving battery's energy storage capacity, cycling stability, and overall efficiency. Therefore, rising demand for carbon nanotubes that are increasingly used for efficient and high-capacity energy storage batteries and systems, will continue to accelerate the growth of global carbon nanotubes market.

  • Challenges: However, the market growth would be negatively impacted by various challenges such as growing environmental and safety concerns, high production and manufacturing cost, etc. The high production and manufacturing cost of CNTs is associated with rising complexity of synthesis process, and increased need for controlled environment, specialized equipment, and precise conditions. These processes often demand expensive catalyst materials, such as transition metals & high-quality carbon feedstock, such as carbon monoxide or hydrocarbon gases, that are costly to be obtained, especially if specific purity and quality standards are required. Therefore, high production and manufacturing cost will have negative effect on the production of carbon nanotubes, impeding the growth of global carbon nanotubes market in the forecasted years.

  • Trends: The market is projected to grow at a fast pace during the forecasted period, due to various latest trends such as integration of AI and ML, rising adoption of electric vehicles (EVs), emergence of functionalized carbon nanotubes, increasing integration of nanotechnology and biotechnology, etc. CNT manufacturers are increasingly integrating real-time process monitoring, sensor data, and AI analytics to better analyze production process parameters, identify correlations, and recognize optimal synthesis conditions, resulting in improved control over CNT growth, increased production efficiency, higher yield, and improved quality control. Similarly, machine learning is used to analyze device performance data, experimental results, and factors influencing device behavior and performance under different settings, further optimizing the performance of CNT-based devices, such as transistors, sensors, or energy storage systems. Therefore, increasing integration of artificial intelligence (AI), machine learning (ML), and deep learning technologies will continue to boost the growth of global carbon nanotubes market in the forecasted years.