Unlock stock picks and a broker-level newsfeed that powers Wall Street.
Evox Therapeutics Presents Progress Across its DeliverEX™ Exosome Therapeutics Platform with Nine Presentations at the International Society for Extracellular Vesicles (ISEV) Annual Meeting
EVOX THERAPEUTICS LIMITED
EVOX THERAPEUTICS LIMITED

OXFORD, United Kingdom, May 26, 2022 (GLOBE NEWSWIRE) -- Evox Therapeutics Ltd (‘Evox’ or the ‘Company’), a leading exosome therapeutics company, announced advances in exosome engineering, manufacturing and tissue targeting at the International Society for Extracellular Vesicles (ISEV) Annual Meeting, on May 25 to 29, 2022, in Lyon, France. The nine presentations highlight the progress the Company has made in modulating exosome pharmacokinetics through extension of circulation half-life and improved tissue-targeting via display of ligands on the exosome surface. Other advances around exosome manufacture, in vivo production, and exosome biology were also presented.

“Exosomes have significant potential as a new therapeutic modality to treat a number of diseases by enabling broader use of a variety of drug payloads including proteins and nucleic acids,” said Antonin de Fougerolles, Ph.D., Chief Executive Officer of Evox Therapeutics. “As demonstrated by our presentations, we are making good progress in engineering exosomes that possess desired drug-like attributes such as tissue targeting and extended circulation half-life. In parallel, we are also focused on advances in exosome manufacturing, including exploring new ways to produce exosome therapeutics. We believe our advances will allow exosome therapeutics access to cellular compartments and tissues that are currently out of reach using other approaches”.

Engineering the surface expression on exosomes for improved pharmacokinetics and tissue-targeting

While the rapid clearance of exosomes from circulation and uptake into tissues can be beneficial by enabling a localised site of action, for certain applications an extended circulating half-life is desirable.

  • Albumin binding exosomes to extend circulation time (OF16.01): One approach to extending plasma half-life is to engineer ligands on the surface of exosomes that bind albumin and thereby impart albumin’s long circulation half-life to these engineered exosomes. In a presentation by Liang et al., it was found that this dramatically increased the circulation time of exosomes in mice regardless of route of administration. This could provide significant benefit for both creating feasible dosing regimens and to ensure sufficient plasma residence time for tissue-specific targeting.

Engineered display of ligands on the surface of exosomes can be used to increase specific targeting of exosomes to desired tissues. In four presentations and posters, Evox scientists and collaborators, reported on improved targeting of exosomes to tumors, muscle cells, inflamed endothelium, and ability to engage with receptors involved in blood brain barrier (BBB) crossing.