In This Article:
Data demonstrate therapeutically relevant editing levels using a clinically validated strategy, supporting its development as a novel, in vivo approach to treating sickle cell disease and beta thalassemia
CAMBRIDGE, Mass., May 14, 2025 (GLOBE NEWSWIRE) -- Editas Medicine, Inc. (Nasdaq: EDIT), a pioneering gene editing company, today shared new in vivo data demonstrating therapeutically relevant levels of HBG1/2 promoter editing in hematopoietic stem cells (HSCs) with a single dose of proprietary targeted lipid nanoparticle (tLNP) in humanized mice and non-human primates (NHPs). This clinically validated approach targeting HBG1/2 promoters to upregulate fetal hemoglobin (HbF) is in pre-clinical development as a potential transformative in vivo gene editing medicine for the treatment of sickle cell disease and beta thalassemia. The Company reported these data in a presentation available today and will detail the data in an oral presentation today at 1:30 p.m. CT/2:30 p.m. ET at the 28th Annual Meeting of the American Society of Gene and Cell Therapy (ASGCT) in New Orleans, LA, and virtually.
In these studies, the Company’s proprietary tLNP formulation delivered HBG1/2 promoter editing cargo to HSPCs and/or HSCs in humanized mice (mice engrafted with human CD34+ cells) and in NHPs. In an ongoing NHP study, administration of a single intravenous dose of Editas Medicine’s proprietary tLNP demonstrated high efficiency HSC delivery and achieved up to 47% HBG1/2 editing levels. In a study with humanized mice, administration of a single dose achieved 48% editing of HBG1/2 in long-term HSCs. Both studies exceeded the predicted editing threshold of ≥25% required for therapeutic benefit. In addition to achieving therapeutically relevant editing levels, preliminary biodistribution data in NHPs with Editas’ tLNP shows significant de-targeting of the liver in contrast to standard LNPs.
“These findings are very encouraging and further support our approach to developing a potentially first- and best-in-class in vivo gene edited medicine for the treatment of sickle cell disease and beta thalassemia,” said Linda C. Burkly, Ph.D., Executive Vice President and Chief Scientific Officer, Editas Medicine. “We believe that translating these preclinical results to the clinic will address the continuing significant unmet need for a transformative gene edited medicine with the potential to improve the lives of people living with sickle cell disease and beta-thalassemia around the world.”
Editas Medicine’s in vivo HSC program targets HBG1/2 promoters to mimic naturally occurring mechanisms of hereditary persistence of fetal hemoglobin (HPFH) and utilizes proprietary AsCas12a to edit with high efficiency and minimize off-target editing. Editing the HBG1/2 promoters with AsCas12a with the investigational medicine reni-cel led to robust increases in fetal hemoglobin (HbF) and total hemoglobin (Hb) in clinical trials.