Criminals are siphoning millions from ATMs. Here's how they can be stopped
Criminals are siphoning millions from ATMs. Here's how they can be stopped · CNBC

A spate of high-profile thefts at automated teller machines (ATM) has sparked alarm and sent law enforcement officials in a tizzy.

But a British cybersecurity firm reckons swindlers can be stopped in their tracks with the help of machine learning and a bit of math.

ATMs have long been a target for criminals, although the style of attacks has evolved in recent years; from illegally tampering with the cash dispensing machines, many are now turning to more sophisticated means of gaining access, by infecting ATMs with malware.

Malware is a generic term for a variety of malicious software that can pose serious cybersecurity threats.

Earlier this year, a gang stole $13 million from ATMs in a three-hour, 14,000 withdrawal spree in Japan , while in Taiwan , hackers breached a major domestic bank in July and used malware to withdraw more than $2 million from dozens of ATMs, reported Reuters.

The Bangkok Post further reported a group made off with 12 million baht ($346,926) from ATMs belonging to the state-run Government Savings Bank (GSB) in Thailand in August.

More worryingly, the attacks aren't restricted to Asia alone.

Analytics software company FICO (FICO) said in a study in April that the number of ATMs in the U.S. that were compromised by criminals rose 546 percent in 2015 over the previous year, the highest growth rate ever observed by the company.

Attacks on ATMs are just one of the major threats facing companies as hackers and cyber criminals have been using increasingly sophisticated means to attack targets ranging from the Democratic National Committee to technology firm Yahoo .

Analysts say that investing heavily on firewalls is no longer enough to contend with the multitude of cyber threats companies face. Often, an organization may not be aware of being compromised until much later, when most of the damage has already been done.

Cambridge-based Darktrace's Asia Pacific managing director, Sanjay Aurora, told CNBC in an interview that malware can breach a company's network and sit idle for as many as 200 days, quietly gathering information before launching a major attack.

Because businesses can have hundreds of connected devices transmitting large volumes of data all at the same time, it is impossible for security personnel to track all the anomalies in the network before they morph into serious cybersecurity threats.

"That's where you use machine learning to interpret all the variety of so-called small events - some related, some unrelated - and use mathematics to say hey this is a leading indicator to an insider threat because I have not seen this there before," explained Aurora.