Canter Resources Extends Widespread Lithium-Boron Brine Mineralization in Phase II Drilling at Columbus Project

In This Article:

Vancouver, British Columbia--(Newsfile Corp. - October 15, 2024) - Canter Resources Corp. (CSE: CRC) (OTC Pink: CNRCF) (FSE: 601) ("Canter" or the "Company") is pleased to announce promising brine assay results from Phase II Geoprobe drilling and provide a recap summary for the 20 total shallow holes completed at its Columbus Lithium-Boron Project near Tonopah, Nevada. With consistent lithium and boron concentrations identified across a widespread area, these results strengthen the Project's potential for significant lithium-boron brine development. Pending solid sediment assays, expected in mid-Q4, will contribute to an updated 3D model that will guide Phase III exploration plans.

Highlights and Key Takeaways from Phased Shallow Drilling to-date

The Company's phased shallow drilling programs have delivered compelling evidence of the Columbus Basin's ability to generate the same lithium-boron commodity mix in brines as are seen at Ioneer's (~CAD$300M market capitalization) nearby Rhyolite Ridge deposit in sediments, which shares volcanic source rocks with the Columbus basin (see Figure 1).

  • Highest Boron Concentration: Phase II infill drill hole (CB24-023G) returned 871 mg/L boron (total) and the highest dissolved boron concentration from Canter's drilling to-date (820 mg/L), providing further evidence of significant boron concentrations with increasing grades at depth (see Table 1 and Figure 2).

  • Lithium Mineralization: Phase II results (up to 15 mg/L) continue to demonstrate the consistent widespread anomalous lithium mineralization in brines from shallow drilling to-date with several >40 mg/L samples and a peak value of 76.4 mg/L (upper ~30 metres). In Clayton Valley (host to Albermarle's Silver Peak lithium brine operation), historical data shows lithium concentrations increase with depth-from 29 ppm at 53 meters to 283 ppm at 218 meters​.1 Collectively, Phase I and II results reveal widespread anomalous lithium concentrations in shallow brines, significantly extending the lithium-bearing footprint. The results underscore the continuity of mineralization, supporting the Company's hypothesis that higher lithium grades will be encountered at depth as exploration continues.

  • Higher-Grade Potential at Depth: Based on structural similarities to Clayton Valley, the Columbus Basin shows significant potential for higher-grade lithium brines at depth. With shallow zones already returning substantial anomalous values, the structural traps and closed hydrological system observed in the basin indicate that deeper aquifers could host even more concentrated lithium brines, similar to patterns seen in mature lithium-producing regions.

  • Consistent Brine Generation Over Significant Footprint: Phase II drill hole CB24-010G returned >400 mg/L boron and up to 11.7 mg/L lithium approximately three (3) kilometres to the north of Phase I locations, extending the near-surface brine generation footprint significantly (see Figure 2).