Biomea Fusion Announces Preliminary Data from Ongoing COVALENT-103 Study of Investigational Covalent FLT3 Inhibitor BMF-500 in Relapsed or Refractory Acute Leukemia

In This Article:

Biomea Fusion, Inc.
Biomea Fusion, Inc.
  • Preliminary data supports BMF-500’s potential as a transformative therapy for patients with FLT3 mutated relapsed or refractory (R/R) acute leukemia

  • BMF-500 showed a favorable safety and tolerability profile, with no dose-limiting toxicities observed across all dose levels

  • Pharmacokinetic and pharmacodynamic data confirmed on-target FMS-like tyrosine kinase 3 (FLT3) inhibition, demonstrating dose-proportional activity and good compartmental penetration

  • Preliminary Phase I data for BMF-500 in R/R acute leukemia patients with FLT3 gene mutations having failed gilteritinib indicated clinical activity with evidence of responses, including a first complete response with incomplete hematologic recovery (CRi) and reductions in bone marrow blasts in 5 of 6 of the evaluable FLT3 mutated patients

REDWOOD CITY, Calif., Dec. 09, 2024 (GLOBE NEWSWIRE) -- Biomea Fusion, Inc. (“Biomea” or “the company”) (Nasdaq: BMEA), a clinical-stage biopharmaceutical company dedicated to discovering and developing novel covalent small molecules to treat and improve the lives of patients with genetically defined cancers and metabolic diseases, today announced preliminary data from the ongoing Phase I COVALENT-103 study evaluating BMF-500, the company’s investigational covalent FLT3 inhibitor developed using the proprietary FUSION™ System.

“These early findings from the COVALENT-103 study announced today highlight the potential of BMF-500 to deliver meaningful clinical benefits for patients with acute leukemia harboring a FLT3 mutation. BMF-500 is an exceptionally potent molecule and the second covalent inhibitor we have developed in-house and advanced to the clinic and has shown high target selectivity and inhibition,” said Thomas Butler, CEO of Biomea Fusion. “Our early results are particularly exciting as FLT3 gene mutations are common in AML patients and are associated with a very poor prognosis. Patients with such mutations who have failed gilteritinib have a median overall survival of less than 2 months. We hope to provide a significant improvement in the outcome for these patients with BMF-500. Given the safety profile demonstrated to date, and the lack of myelosuppression, we think BMF-500 could be an excellent combination partner used in standard of care.”

As of the data cut off, November 20, 2024, 20 patients with R/R acute leukemia had been enrolled in the dose-escalation portion of the study, all of whom received at least one dose of BMF-500. Among these, the study enrolled 13 patients with confirmed FLT3-mutations, of which 10 harbored FLT3-ITD mutations and 3 had FLT3-TKD mutations. All patients with FLT3-mutations had progressed following treatment with gilteritinib, and 5 had received at least 2 prior FLT3 inhibitors. The study enrolled 5 patients with wild-type FLT3 and 2 patients with an unknown FLT3 mutation status. The median number of prior lines of therapies among the enrolled patients was 4. No QT prolongations or related cytopenias were observed and no dose-limiting toxicities (DLTs) were reported as of the data cut off. BMF-500 was generally well tolerated, and dose escalation is continuing per protocol.