Battery X Metals Announces Amended Agreement with Global Top 20 Ranked University to Accelerate Eco-Friendly Battery-Grade Material Recovery Technology

In This Article:

News Release Highlights:

  • Extended Research Partnership with Global Top 20 Ranked University: Battery X Metals has amended and extended its collaboration with a global Top 20 ranked university to advance the development of its proprietary eco-friendly battery-grade material recovery technology.

  • Proprietary Eco-Friendly Battery-Grade Material Recovery Technology: The collaboration focuses on optimizing Battery X Metals' proprietary eco-friendly froth flotation process, a sustainable and energy-efficient method for recovering critical battery-grade materials such as graphite, lithium, nickel, and cobalt from black mass. This technology aims to enhance battery-grade material recovery while reducing environmental impact and energy consumption.

  • Commitment to Clean Energy Transition & Sustainability: Battery X Metals' innovative lithium-ion battery recycling technology aligns with global efforts for cleaner energy by ensuring a steady supply of critical battery materials essential for electric vehicle (EV) battery production. This eco-friendly process supports both sustainability and economic growth in the clean energy transition.

VANCOUVER, BC / ACCESSWIRE / September 24, 2024 / Battery X Metals Inc. (CSE:BATX)(OTCQB:BATX)(FSE:R0W, WKN:A3EMJB) ("Battery X Metals" or the "Company") is pleased to announce that its wholly-owned subsidiary, Battery X Recycling Technologies Inc., has entered into an amended research collaboration agreement (the "Agreement") with a global Top 20 ranked university (the "University"). As one of North America's largest and most advanced centers for mining engineering education and research, the University's Institute of Mining Engineering will collaborate to further advance the company's proprietary battery-grade material recovery technology. This Agreement, effective August 1, 2024, extends the partnership through June 30, 2025.

The Problem

The global shift toward electrification is driving the clean energy transition, with lithium-ion batteries playing a central role in reducing reliance on fossil fuels1. Lithium-ion battery demand is projected to surge by 670% by 20302, with energy storage requirements rising from 700 GWh in 2022 to 4.7 TWh2, primarily due to EVs2. Regulatory initiatives, such as the US Inflation Reduction Act and Europe's "Fit for 55" program, along with the EU's 2035 ban on internal combustion engine vehicles1, are accelerating this growth. Yet, less than 5% of lithium-ion batteries are currently recycled3. EVs and battery storage will make up about half of the mineral demand growth from clean energy technologies over the next 20 years, spurred by the surging demand for battery materials4 like graphite, lithium, nickel, cobalt, manganese, and copper.